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Abstract

In the classical form of the finite element method, called the h

version, piecewise polynomials of fixed degree p are used and the mesh size h

is decreased for accuracy. In this paper, we discuss the fundamental

theoretical ideas behind the relatively recent p version and h-p version. In

the p version, a fixed mesh is used and p is allowed to increase. The h-p

version combines both approaches. We describe and explain the basic

properties and characteristics of these newer versions, especially in areas

where their behavior is significantly different from that of the h version.

We include simplified proofs of key concepts and provide computational

illustrations of several results.

Subject Classifications: AMS (MOS): 65N30
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1. INTRODUCTION

A major tool in computational mechanics today is the finite element

method (FEM). Although this method has a long history (see e.g., [Od][Wl].)

the beginning of its computational success can be related to [TC], [Cl].

Originally, the main application of the FEM was in the area of structural

mechanics but today, its use has expanded to various other fields such as

fluid mechanics, thermal analysis, electrical engineering, etc., with

applications to both linear and nonlinear, stationary and transient analysis.

Consequently, there is a vast body of published research in the field of

finite element theory and applications. In Figure 1.1, we have presented data

showing the number of papers related to the FEM. (See also (Mal.)

- FEM

3500- 37600 references

2500-

1500-

500 .. . . . .
1976 1980 1985 1990

YEAR

Figure 1.1. Number of FEM papers in MAKEBASE database (1990, 1991 are
not completely correct-delayed literature acquisition. Computational fluid
mechanics is not included.) (Courtesy: Jaroslav Mackerle, Linkoping Inst. of
Technology, Sweden).
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Most of the papers represented in Figure 1.1 are related to the

classical form of the FEM, called the h version, in which polynomials of fixed

degree p are used and the mesh is refined to increase accuracy. There are

several commercial finite element programs based on the h version of the FEM

which are currently available (e.g., MSC/NASTRAN, Cosmos/M, Abaqus, Aska,

Adina, Ansys, etc.).

In contrast, only a few (less than 100) of the above papers are related

to the relatively recent p and h-p versions. The p version of the FEM uses a

fixed mesh but increases the polynomial degree p to increase accuracy. In the

h-p version, the two approaches of mesh refinement and degree enhancement are

combined. (The h and p versions can be considered as special cases of the h-p

version.) The first theoretical papers on these new versions ([BSKI, [BD])

were published in 1981. Recently, a few commercial and large research

programs have become available on these versions, such as MSC/PROBE, Applied

Structure, PHLEX and STRIPE. In contrast to the many books devoted to the h

version FEM in engineering and mathematics, the only book addressing the p and

h-p versions is [SzB].

In this paper, we discuss the basic theoretical ideas of the p and h-p

versions of the FEM. Rather than an exhaustive summary of published work, our

goal here is to describe only the most salient (and practically useful)

features which are characteristic of the p and h-p versions. We give

numerous elaborations and examples of key theoretical results to help explain

the underlying reasons for the behavior of these versions, and to bring out

the differences that exist in comparison to the classical h version. We also

include informal proofs of several important theorems to make them more

accessible and to help introduce the reader to p version theoretical
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techniques of approximation (which can be quite different from standard h

version techniques). Throughout this survey, we concentrate on problems

related to structural mechanics, as opposed to other applications.

The plan of our paper is as follows. In Section 2, we consider the

one-dimensional case, which allows us to present various ideas and results

(which hold for higher dimensions as well) in a simplified setting. Perhaps

the most important characteristic of the p and h-p versions, the enhanced

asymptotic rates of convergence that are possible, is discussed at length in

Sections 2.3 - 2.4. We show, by elementary arguments, exactly what leads to

the well-documented phenomenon of the "doubling" in the rate of convergence of

the p version (over the h version) in the presence of singularities. We also

demonstrate (by mean•s of some simple proofs) the following basic difference:

the rate for the h version can never be better than algebraic (no matter which

mesh is used), while the h-p version can yield exponential rates. In Sections

2.5, 2.6, we discuss, respectively, the error in the L2 norm and the problem

of "pollution", two areas in which the p version behaves differently from the

h version.

The two- and three-dimensional analogs of results in Section 2 are

discussed in Section 4. The refined approximation theorems for the p and h-p

versions presented in Section 4 are extremely dependent on precise regularity

results for the solution (which are more detailed than those required for the

h version). Therefore, Section 3 is devoted to a survey of various types of

regularity theorems for elliptic problems that are used in the development of

such convergence results. In particular, regularity results in terms of

countably normed spaces, which are crucial in deriving exponential rates of

convergence for the h-p version, are presented in Section 3.3.
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An inherent property of the p version is its robustness in most

situations, a characteristic that can be put to good use in applications to

problems that are susceptible to numerical locking. We explain this

phenomenon in Section 5 and survey some recent related results, using the

equations of linear elasticity as a model.

The convergence results in Section 2, 4 are mostly in the energy norm.

Often, instead of the energy, some other functional of the solution is of

interest. In Section 6, we discuss extraction procedures by which these

functionals can be recovered from the solution. As a result, the high rates

of convergence for the h-p version in the energy are preserved for these

quantities of interest as well.

In Section 7, we consider the use of the p version in plate modeling.

We show how a hierarchy of plate models may be set up, which approximates the

three-dimensional plate with increasing accuracy. The implementation of such

a hierarchy of plate models can then be effected in a natural way by using the

p version. This may be used to ensure convergence to the solution of the

three-dimensional plate, as opposed to that of a two dimensional plate model

which is what happens when a fixed model (e.g., the Reissner-Mindlin plate) is

discretized.

Implementational aspects of the p and h-p version are briefly discussed

in Section 8.

We have not tried to compose an exhaustive bibliography of publications

on the p and h-p version (as could, for instance, be obtained using

MAKEBASE). Rather, we have provided only selected representative references,

for the interested reader to obtain more information on the topics discussed.

In this connection, some representative references on the p and h-p versions
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for areas not discussed in this paper are as follows: boundary element

methods [PS], [SSI, mixed methods [JVI, [S1], parabolic problems [BJ], free

boundary problems [ZB], shape optimization [Shi, non-linear problems [Ng],

solution of large systems [Mn]. In addition, see [Sz] for a survey on

computational questions related to the p and h-p version.

2. The h, p AND h-p VERSIONS IN ONE DIMENSION

The one-dimensional setting allows a simple and convenient vehicle for

the exposition of our basic ideas and results. The fundamental properties of

and differences between the h, p and h-p versions are most clearly explained

and understood through the one-dimensional results and numerical illustrations

in this section. These also indicate what can be expected in two and three

dimensions (discussed in succeeding sections), for which strongly analogous

results hold. A detailed analysis of the 1-d case has been made in [GiBI,

from which most of the results in this section have been cited.

2.1. The model problem and its discretization

Let us consider the model problem

(2.1) -u" = f on Q = (0,I) = I,

u(0) = uMi) = 0.

k-2 1We will consider the general case when it is only known that f E H (Q)

k 2 1, as well as the particular case when f is such that the exact

solution of (2.1) is

IHere and elsewhere, W k't(t), Hk (0), Hk (Q) will denote the usual
Sobolev spaces.
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(2.2) u(x) = x -x, a >

It will be seen shortly that much more refined convergence results exist

for the particular case (2.2) than the general case. The form (2.2) is

obviously singular at the endpoint x = 0. The reason we choose it is that it

serves as a model for two (and higher) dimensions where analogous

singularities exist at the corners of domains which are curvilinear polygons

(see Section 3). The restriction a > 1 is made to ensure that u H1 ().

In general, the regularity of the solution u is determined by the

regularity of f. Obviously, if f c H k-2(), then u E Hk (9). An analogous

but more complicated relation between the regularity of the input data and of

the solution occurs in two and three dimensions and will be discussed in

Section 3.

As a prelude to using the finite element method, the problem (2.1) is

cast into the following variational form. Find u e H1 (9) such that for any
0

v e H 1Ic),
0

(2.3) B(u,v) = f u'(x)v'(x)dx = f(v)

with

f(v) = f(x)v(x)dx.

The above may now be discretized by constructing a sequence of finite-
dimensional (finite element) subspaces Vn c H1 () of dimension N =

0 n

N(Vn), n = 1,2,..., called the number of degrees of freedom. These spaces

consist of piecewise polynomials on a sequence of meshes {g n, n = 1,2,...,

on Q where
= •nn n

0 1 mn
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We denote in = [xr_ h n= x, - x ,jn _ njh = max h
j Il j n,j j j- n

n

and call I n elements.
2

Let us now consider three basic types of meshes, which are analogous to

those used in the two and three dimensional settings.

1. The quasiuniform mesh. Here { n} is such that we have for all n

h
n

h
n,j

where T > 0 will be called the quasiuniformity constant. A special case is

the uniform mesh, where r = 1 and

n _i

(2.5) x. -= , i = 0'....m
1 m n

n

2. The radical mesh with power 3 > 0 (with respect to x = 0). This

is defined by choosing

(2.6) Xn 1==.• = i . . n1

(the uniform mesh is obviously a radical mesh with (3 = 1).

The radical mesh is a special case of a "graded mesh" with "grading

function" g(y) = yA, defined by

x.: i=l,.... m.nn
n

i g'in)

Remark 2.1: A generalization of graded meshes uses the notion of density

S (0 = g' in the one-dimensional case). It is naturally applicable to two

dimensions. See [Hul.

2 We consider here only a denumerable family of meshes. Of course, we
could consider a one (or more) parametric family of meshes as well.
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3. The geometric mesh with ratio q, 0 < q < 1 (with respect to x

0). Here,

m -in n
(2.7a) x = q , i = 1....m

1n

(2.7b) x 0 0.

A more general definition will be presented in Section 4 for the 2-d case.

Let =n ( iPn,2 . .n,n) 1 an integer, be called the

degree vector. By Vn (YnP) c H0(0), we denote the set of all functions v

such that the restriction vi is a polynomial of degree Pn,j' i.e. it

i

lies in P . If p . = p then we speak about the uniform degree vector

-n for which we write p. = vn (Ynpn) will be called the space of

elements of degree Pn"

Having constructed a finite-dimensional subspace as above, we now define

the finite element solution as u E Vn satisfying (2.3) for all v E Vn.n

Then we immediately obtain, with e = u - un n'

(2.8) le nlE ,inf I - v
SEV

where IlullE = (B(u,u))1/2 is the energy norm, which is equivalent to the

H (Q) norm.

In this paper, we will be most'; interested in the energy norm measure

of the error in the finite element solution. Any change of the norm can (and

usually does) change the results and conclusions following from them. In

practice, many different accuracy assessments are used.
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2.2 Extension processes

In order to increase the accuracy of the finite element solution, we

define an extension process which entails the construction of a sequence of

subspaces Vn (of particular character). The classical extension process

uses vn(yn, n) where •n, n = 1,2,..., is a sequence of meshes with h' ' n

decreasing (h -) 0 as n - w) and R= p, usually p = 1,2. Here the
n

meshes 5 n could be a sequence of uniform, quasiuniform or non-quasiuniform

meshes. This choice of Vn is called the h version of the FEM.CM]

The p version of the FEM on the other hand uses Vn (Yr ,n P), where n

J' is a fixed mesh and the degrees pn,j 00 as n 4 o. The increase of P-n

can be uniform ( Pn= pn), or selective (i.e., pn,j are different for

different j). The mesh 5T can be essentially uniform or it may be strongly

refined in certain areas.

Finally, the h-p version of the FEM consists of Vn (Yn' pn) with gn in

general being refined and Pn increasing with n. Obviously, the h-p version

is a generalization of the h and p versions.

It is useful to distinguish between hierarchic and non-hierarchic

n+1 nextensions. Hierarchic ones are such that V • Vn. This assures that the

error decreases monotonically, i.e., lien+l1IE IeFIIE. If the spaces Vn are

not hierarchic then, in general, this monotone behavior does not hold. The

basis functions for the p version are in general hierarchic.

In practice, of course, we always use finite meshes with elements of

finite degree so that for concrete computations, the distinction between

different extensions is blurred. Nevertheless, this distinction is important

not only theoretically, but also for practical purposes, since while per-

forming an actual computation it is usually assumed that the results are in
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the asymptotic range of the extension process. Since, in practice, one or

more steps of the extension process are usually carried out, it is here that

the behavior and asymptotic properties of various extensions play an important

role.

2.3. Approximation theorems for quasiuniform meshes

The rate at which the finite element approximations converge to the true

solution will depend upon two factors: the definition of each of the

subspaces Vn (i.e., quasiuniform or non-quasiuniform meshes, choice of Pn'

etc.) as well as the type of extension procedure (h, p or h-p). We now

present various approximation theorems which bound the right hand side

of (2.8), in terms of the number of degrees of freedom N = dim Vn. If
n

various methods are to be compared, they should be assessed in terms of the

total work required to obtain a given accuracy. Although N is one measuren

of the work required, it does not give the complete picture, since various

other factors like amount of user time, special solution techniques, etc., are

involved (see [BE], (BEM], [CM]). With these qualifications in mind, we first

discuss the case of the h-p version using quasiuniform meshes. We will omit

the subscript n where no confusion would occur.

Theorem 2.1. Let 2n = Pn = p' and Jn be quasiuniform. Then for k z 1

(2.9) 1le l1E : Ch (u-1)p- (k-1) 11u k

where p = min(k,p+l) and C is independent of n (i.e., of h, p) and u,

but depends on k and the quasiuniformity constant T.

From this, noting that N = N(V n) Ch- p, we obtain the following

corollaries.
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Corollary 2.1. For the h version (i.e., Pn = p) we get

(2.10) IlellE - Ch("- Ilull k(0)

Corollary 2.2. For the p version (i.e., 9n = 7) we get

(2.11) Ile lE 5 Cp (k-1) lull Hk CN-(k-1)

The estimate (2.9) is a refined version of the estimate (2.10) which

is the one found in many books on the FEM. It shows explicitly how the

constant C in (2.10) behaves with respect to p. The two-dimensional

version of this estimate (see also Theorem 4.1) was proven in [BSl] while

that of the estimate (2.11) was proven in [BS2].

Notice that (2.9) shows that if the h version is used in a case that

k < p + 1, increasing p further will decrease the error by decreasing the

-(k-1)"constant" Cp , though it will not affect the exponent of h. This

exponent of N (or h) is often called the asymptotic order of convergence,

and, for example, for (2.10) will often be written as

IlejIE = O(N-(;-l)).

The above estimates are optimal in the following sense. For

any N, there is a function u E Hk (0), possibly depending on N, such that

(2.12) IlellE a CN-(k-1) IlullH k (Q)

with C > 0 independent of u, N, the mesh 5, and element degrees p.

(2.12) follows from the theory of n-widths (see [P1]).

If k a p + 1, then for the h version there is a u E H k() such that

11



(2.13) IelE 2 C(p)hp 1uIIHRk CN-

with C independent of 5n

Let us remark that the error bounds (2.12) and (2.13) must be

distinguished from asymptotical expansions of the type

(2.14) IlellE = C(u)N-(k-1) + o(N-M-1)

which are stronger estimates.

In practice, we are usually interested in the convergence of the FEM for

a specific u, namely the solution of the problem of interest. For this

specific u, the rate of convergence could be higher than the rate for the

"worst" case (which is the one addressed in (2.9) and (2.11)). For example,

function u defined in (2.2) belongs maximally to HM- 1 /2- (M) but the

convergence rate in (2.9) can be too pessimistic since for particular

relations between h and p, better asymptotic rates of the form (2.14) hold

(see e.g. Theorem 2.2). In general, we must therefore distinguish between the

convergence rate for the worst case (which may sometimes only be achievable

for a sequence of exact solutions dependent on N) and the convergence rate

for a particular case, especially when the solution under consideration is

"reasonable". Consequently, when the accuracy of the FEM is experimentally

studied by numerical determination of the exponent (k-i) of N in (2.14),

it should be kept in mind that this only gives an upper bound for the true

exponent in (2.12), (2.13) and cannot always serve as an indicator of the

performance of the method for all cases.

The estimate (2.13) shows that the maximum possible rate of convergence

using the h version is always bounded by the fixed degree p of polynomials
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used. In contrast, (2.11) shows that the p version gives arbitrarily high

rates of convergence, depending only on the smoothness of the function u.

The above estimates are based only on the information that u E H k(Q).

If more information is available, then better estimates can be obtained. For

example, if u is analytic on [0,11, then the error for the p version

decays exponentially.

Let us now assume that the solution has a singularity at a point, or

specifically, that u is given by (2.2). Then we have

Theorem 2.2. Let the solution u be given by (2.2). Then

1/2 in(x-12,pcc+/2)-2((x-i1/2)

Ile11E hs C min[h p.

This gives immediately

Corollary 2.3. For the h version

(2.15) elellE :s Ch-1/ 2  = O(N(a-/2))

Corollary 2.4. For the p version

(2.16) ilellE : Cp-2(- 1 /2) = O(N- 2 (a-1/2))

The estimate (2.15) follows from (2.10) when Besov spaces Ba are
2,k

used instead of fractional Sobolev spaces Hk (0). It is sharp when

quasiuniform meshes are used, in the sense that there exists C > 0 such that

(2.17) Ile IE N Ch- 1 2 .

Also, (2.16) Is sharp as well. Theorem 2.2 is once more a special version of

the theorem for the two-dimensional case proven in [BS1], [BD] (where cc -I2
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has to be replaced by 0).

We see that the p version gives twice the rate of convergence as the h

version (on quasiuniform meshes) when the solution has an x type of

singularity at an endpoint of the element. If the singularity is located

inside the element, then this doubling in the rate does not occur. The above

result about doubling of the rate was first proven for the two-dimensional

case in [BSK], where a slightly weaker result, showing the doubled rate of

convergence reduced by an amount O(NE) (c > 0 arbitrary), was obtained.

The dependence on c was removed in (BS2].

Let us outline the reason for obtaining the rate of convergence

O(N-2(a-/2) ) in Corollary 2.4. Suppose, for simplicity, we have just one

element and the domain is Q = (-1,1) instead of Q = (0,1), with the

solution (2.2) correspondingly scaled. Then if we were to use the standard

estimate (2.11) with u being imbedded in the Besov space like we did for the

h version, we would get an identical rate O(N-(a-1/2)) as in (2.15). It

turns out, however, that using various orthogonality properties of Jacobi

polynomials, one can show that [GiB]

(2.18) Ilu - up1ES Cp-k lullv ik)

where

(2.19) 11V 112 k = l(l-t 2 )kv (VkW)2 dt

so that the usual Sobolev norm in (2.11) is replaced by the weighted Sobolev

norm in (2.19). Now it may be readily verified that although the solution

(2.2) satisfies u' e Hk(Q) for k < a only, due to the weight (l-t2)k

14



in (2.19), we have instead, U' E (0) for k 2(a ) leading to the

doubled rate up to an arbitrary c > 0.

In order to obtain a rate of O(p-k ) with k actually equal to
1

2(a - -) without the c, a more detailed analysis is required. Specifically,

we expand u' in terms of the Legendre polynomials {P }n

(2.20) u'(x) = E a P (x)

n=l

and choose u such that u (t1) = 0 and u' is the sum of the first (p-l)
p p p

terms of (2.20). Then we have, by the orthogonality property of {P n,n

(2.21) flu - U p E =1 2 a n 2 n2

p

Here, a may be explicitly computed by the formulan

_2n+l 1• 2nl - x 12-n

a - 2 1 u'P (t)dt 2n+l (C(i+t) -2) 1 __ [(l-t 2) nI (n)dtan 2 f _- n 2 nn
-1 -1n.

using the Rodriguez form of Legendre polynomials. Once again, the weight

(1-t2)n leads to an "absorption" of the singularity at the end of Q.

Integrating by parts and using some properties of the gamma function leads to

the following estimate, proved in [GiB]

C1(•) C2(•)
n-l C(a) C1 (() C2 (

(2.22) a = (_- ) (1 + + +n 2- 1 n 2n n

with

C(() - I r (a)1 2 i ( l)

(2.21), (2.22) lead to the following theorem, which has been stated in terms

15



of the original domain Q~ = (0,1) ([GiB]):

Theorem 2.3. For the p version in the case of a single element, we have

(2.23) Ilell = 0 a 1 (1 + 0(-1))
pp

as p -* a, where

C () a(r(oc) ) 2sin noct

Let us show a numerical example. Consider the cases a =0.7 and a

A E
3.5. In Table 2.1 we show computed values of IleenIE =E pand R = where

p

E Ais the leading term in the right hand side of (2.23). The numerical
p

results are seen to be in close agreement with (2.23).

TABLE 2.1. The error of the finite element solution.

a 0.7 a 3.5

E R A E R A
p p p p

1 4.743E-1 0.9877 1.021 0.203
2 3.637E-1 0.0067 3.402E-1 4.335
3 3.090E-1 0.9985 3.093E-2 4.488
4 2.766E-1 0.9992 2.379E-3 1.949
5 2.522E-1 0.9995 4.760E-4 1.480
6 2.344E-1 0.9996 1.400E-4 1.300
7 2.204E-1 0.9997 5.154E-5 1.208
8 2.090E-1 0.9998 2.210E-5 1.153
9 1.994E-1 0.9998 i.057E-5 1.118
10 1.912E-1 0.9999 5.495E-6 1.094
11 1-840E-1 0.9999 3.053E-6 1.077
12 1.777E-1 0.9999 1.790E-6 1.064
13 1.722E-1 1.000 8.999E-7 1.054
14 1-671E-1 1.000 6.978E-7 1.046
15 1.626E-1 1.000 4.585E-7 1.040
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2.4. Approximation theorems for non-quasiuniform meshes

Let us now consider the case when non-quasiuniform meshes are used and

the solution is given by (2.2). We will show that it is possible to get an

exponential rate of convergence (in N) using the h-p version of the FEM.

First, however, let us discuss the h version. Let us show that the best

possible rate is O(N-p) (no matter what mesh is used) i.e., the convergence is

always algebraic. As before, N is the number of degrees of freedom and p

is the degree of polynomials used in the h version.

For simplicity, we take p = 1. Let w(x) u'(x) = xo -1 on Q =

(0,1). Then w(x) is monotonic and Iw'(x)l L - - 11 = K. Now over I. =J

(X jl,xj) we have

f le'2dx a inf lw(x)- c dx 2 3( K
I c I I3J J

Hence

m,IlelE c E hj.
j=1

(Here m is the number of elements). Since the h.'s in the above are
n j

arbitrary, we estimate the above sum as follows. Let

S= {j h. h I-z J {j h. <-2-nj 2mn2

Then obviously

h. < m _

h n 2m 2
JEJ* 

n

so that since I = (0,1) we have

Z • I
h -

jEJ

17



Therefore

m n 3 3 2 I h
hj - hj -Z- )2

j=1 jJ jJ TMn

Because N = m - 1 we get

(2.24) IlelE 2t CN-1

no matter what kind of mesh is used. A similar result holds for p > I.

The following theorem shows that we also have Ile lE : CN-p provided the

mesh is properly chosen (i.e., the above bound is attained).

Theorem 2.4. For the h version, using polynomials of fixed degree (i.e., pn =

p), the radical mesh using m elements with

(2.25) 0= p+1/2
c- 1/2

is the optimal choice and the following estimate holds with h = -m

lie L ~ p+1/2
(2.26) lim - C(Mp)

h-)w hp 0

where

(2.27) C(a,p) -r(coIsin xrxlr(p-c+1)

,r- 4P vr2p+l F(p+1/2)

The notion of optimality in the above theorem is understood in the

following sense. Consider the sequences of meshes defined by grading

functions g that satisfy

I) g E C [0,11 C I(ol)

il) g(O) = 0, g(l) = 1 and g is strictly increasing.

Then the error of the FEM with the radical mesh (g = x O) attains the

18



minimum among all grading meshes satisfying i), ii).

It is better to (mildly) overrefine the mesh than underrefine it. This

can be seen from the detailed results proven in [GiB]. Mild overrefinement

is advisable in two and three dimensions as well.

We see that proper refinement leads to the highest possible rate in the

h version, algebraic in N, which is the same as would be achieved if the

solution were smooth. We also see that for fixed p (uniform) the best mesh

to use (for the h version) is a radical one, with the refinement strength

(i.e., 1) being increased linearly with p.

Let us now show that an exponential rate of convergence is possible

using the h-p version. For simplicity, we will take a uniform degree

vector. Let us take the mesh to be the geometric one defined by (2.7) and let

-= (x +x1-1i2 2 -I ix

As before, let w(x) = u'(x), with u(x) given by (2.2), and let us expand

w(x) in terms of its Taylor expansion about the point x. so that
1-1/2

(2.28) w(x) = w. Wx) + r. Wx) = a i Cx-x. k + (x-x. k
1,p 1,p E k 1-1/2 Eak 1-1/2

k=O k=p

where w. (x) is the Taylor polynomial of degree p - 1 and r. Cx) is1,p ",p

the remainder. Using (2.7a) (2.7b) we see that

x.i +x i1  m(3x. q.
1-1/2 2 2

and
x i-x.

2 2 q

Now for i 2,3,...,m, the function x is analytic in the closed disk

19



with center x. and radius q(m-i) (1+q - ) q x - x._ for i a 3)
1-1/2 q2 1-1/2 12

and is bounded by Cq (Mi)(I) there. Hence, applying the Cauchy theorem,

Mik i21-i-i k (m-i)((X-1) (Lq ( I¶q 2 -k (m-i)(x-1) k
la k 1 2 1 Cq 2 2 q Cq p

where IpI = 12q+ll-I < 1, and C is independent of m, i, k. Hence

(2.29) jw(x) - w. (x)I W Cq (m-i)(P-1)
"lp

Using this,

(2.30) = inf f Ir- wl2 dx s { i p - w12 dx

p-1 i i

P 2p2 q (m-i)(2(a-l)+1).

Therefore
m 2p

(2.31) E E cp

i=2

Next, we note that

(2.32) inf Ir-wl 2 dx : J lw(x)I 2 dx = Cq (m-l)(2c•-1) m• C

rP-1 1 11

for some 0 < p1 < 1. Choosing p = Km and noting that N = m(p+1) we see

using (2.31), (2.32) that

m E C N1/2
hE • Ce

i=i

for some 7 > 0 and C depending on q, (.

Now let ri denote the minimizer of E in (2.30). Then obviously
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(r.-w)dx = 0.

I

Hence defining R(x), 0 < x < 1, R(x)1" = ri(x) we can define
1

W(x) = r0 R(t)dt

and get w(l) = 0. Hence w E Vn (7 ,p) such that

1 : Ce-N1/21! u-co if~ ce

and the exponential rate is proven. See [GiB] for a more precise analysis.

We have used 2 uniform. We could also analyze the case for 2

non-uniform. In fact, the optimal rate is obtained by choosing a non-uniform

degree vector as described in the following theorems.

Theorem 2.5. Let [a] denote the integral part of a. Then the optimal mesh

for the h-p version is the geometric one with ratio q.= (vr2 - 1)2 = e-17626

z 0.17 and linear degree vector 2 = {pj}, pj = [s 0 il + 1 with s. = 2a -

1. With this choice,

(2.34) IlellE C(o)qg(a-l/2)N = C()e-1.'7626Vr_-l/2)N

Let us be more precise about the notion of optimality. We have the

following theorem.

Theorem 2.6. For any mesh 0, and any degree vector p, we have

i(o-1/2)N
IlellE c(x)

IC /N(a1-/ 2 )
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Comparing the lower bound given in Theorem 2.6 and the upper one in Theorem

2.5, we see that the geometrical mesh with linear degree vector gives the

maximal possible exponential rate. This is the justification for calling the

mesh optimal.

For any given geometrical mesh with ratio q there is an optimal p,

which is linear, with slope

( (q) 1 log q = - r-
(2.35) 0 2 log r + vr

For this choice, the error is

(2.3l C(,q)e-(-/ 2 )N V2 log q log r(2.36) 11 e IE 5 C xqe

This shows that for small q (i.e. strong refinement) the optimal

degree vector is less uniform.

In Theorems 2.5 and 2.6, we have addressed the case whe2n the degree

vector was non-uniform. For uniform degree vector, the situation is slightly

different.

Theorem 2.7. Let q be the ratio of the geometric mesh with m elements and

p = S0m where s0  is as in (2.35). Then

IlellE : C(a,q)e-/(-a-/2)N Vlog q log r N -- /2

where

(= min(2a-l,a).

Substituting the optimal q = qo= (v( 1) 2 in the above, we get

(2.37) lellE C(a)e- I2464'(c-l/2)N N

Hence we see that the exponential rate is smaller in this case.
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In practice (in higher dimensions) one often uses a geometric mesh with

a fixed number of elements m and determines p more or less adaptively.

For every m, the convergence will have two parts. In the pre-asymptotic

portion, the rate is exponential, while in the asymptotic region, one obtains

the algebraic rate of the p version. If the result of a computation lies in

the algebraic part, then this indicates the mesh was not sufficiently refined.

If a uniform degree vector p is to be used, then it turns out that the

geometric mesh does not give the best rate of convergence, i.e. (2.37) is not

optimal. We have seen that for fixed uniform degree vector (i.e.. ' h

version), the radical (and not the geometric) mesh is ,pL!.,mai . If we

consider a sequence of uniform degree vectors and perform the h version for

each of them with the corresponding optimal radical mesh, then the envelope of

the resulting error curves leads to an h-p version which gives better results

than the one in Theorem 2.7. We have the following theorem.

Theorem 2.8. There is an h-p version with uniform degree vector p which

has the following estimate

(2.38) IelE C ( ) e - e1E 5N (o_1/2)/2 N (o_1/2)/2 e

As N - o, the meshes (inside (0,1)) tend to the geometric mesh with
-4/e 2

ratio q = e 4 0.5820 and the relation between the degree p and the

number of elements m tends to a linear one,

4 1
Sz 4 (a-1)m.

2
e

Various numerical example illustrating these results may be found in
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[GiB].

2.5. The rate of convergence in the L2 norm

So far, we have discussed the h, p and h-p versions in terms of their

convergence in the energy norm. An important difference between the

h version on the one hand and the p (and h-p) version on the other that is

apparent from the above is that the p (and h-p) version leads to different

asymptotic rates of convergence, depending upon the nature of the solution

(for example, the "doubling" effect for xa singularities). In contrast,

the only way that the h version could lead to a rate better than O(hp) for

a function f(x) is if f were a polynomial of degree S p. This

difference leads to an interesting effect in the error in the L2 and other

lower-order norms.

Let us discuss the error in the L2 norm for the p version. Suppose

we first consider the case where u e Hk (0). Then, by the usual duality

argument, we may show

(2.39) ileIlL 2( ) 5 Cp IlellE

so that using Corollary 2.2,

Ie IL2 (1) cp-k lullUHk (k )

In fact, the usual duality gives the following theorem.

Theorem 2.9. Let P-n = Pn = p and ,,n be quasiuniform. Then for k a 1,

(2.40) IlelL 2 () Ch p-klll Hk(0)
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where A = min(k,p+l).

This result is optimal in the sense that

sup inf nIu-v1L2(0) a Ch p -k
uEHk() vEV 2

11ll ll k :5
H (02)

If we now consider the special singular solution of the form (2.2)

(scaled on to 0 = (-1,1)), then Theorem 2.9 predicts a rate of

O(hmin(+1+/2 'p+l)) for the h version which is the best L2 error possible

with a quasiuniform mesh, and so is again optimal. For the p version (using

a single element), we may now use (2.39) with (2.23) to obtain an O(p-2 )

rate. The optimal L2 approximation estimate is essentially obtained by

taking a = a + I in Theorem 2.3, which gives

-2 (x+ 1
(2.41) inf lu-vilL 2(0) = Cp (1+0(p-l1

vEV2

Hence the estimate through duality does not give the optimal rate (2.41).
1

An improved estimate of O(p ) may be obtained using the fact that

(2.42) P (t)dt = 1 (x) - P Wx))
p P 2p+l p+1 p-I

Then by (2.20), the definition of u , and (2.42),

a
(2.43) u -u p = r P (t)dtp 2r+1 - r

r=p

ap ap+ P + 0 a a r+2
2p+1 p-1 2p+3 p r E +1 2r+5) Pr+l"

r=p
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Define
ar ar÷

b - r r+2
r 2r+1 2r+5

Then, using (2.22), we obtain

C(a0 C (00
(2.44) b = (-l)-Ia) 1 C__ (00 +2 ...

r 2(++l r 2 "r r

Now by (2.43),
2 2a a 2a p-12 ap+! 2 O b2 2

(2.45) Ilu - up2) =2p+ 2 + 2 + b2(0) =( 2p+1) 2 121 (2p+3) 2 2p+1 r 2r+3

r=p

Using (2.44), we that

• b 2 _C(x) -1

b 2 - 4 ( 2d (1 + O (p )).
r 2r+3 - 4a+2

r=p

Also, (2.22) may be used to estimate the first two terms in (2.45), yielding

(2.46) Ilu - u C(a.) (0 +p21/2

This estimate, which is sharp, improves upon the rate through duality, but

still does not give the optimal rate of (2.41).

Hence we observe the following interesting difference when the

projection of the function (2.2) is taken in the energy norm (equivalent to

the H 1(M) norm). For the h version, the convergence in the L2 (0) norm is
min(o:+!,p+I)

O(h 2 which is optimal. For the p version, this L2  convergence

-2(x- I

rate is higher, O(p 2). However, the best L2  approximation is

O(p-2a- ), which is even higher. As a result, the energy norm projection

does not give the optimal rate in the L2 (0) norm for (2.2) (see [Er]). Let

us mention that In two dimensions, for non-convex domains, the h version also

fails to give the optimal L2 rate (see Section 4.2).
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2.6. The pollution problem

Let us now discuss another difference between the h and p versions, the

phenomenon of pollution. This is said to occur when unsmoothness of the

solution u in one area influences the accuracy of u in a different area,n

i.e. the accuracy of u is not governed by the local behavior of then

solution u. Consider once again the approximation of u given by (2.2)

(scaled to (-1,1)). Then u is singular at x = -1 but analytic everywhere

else. Suppose u is the solution using the h version (say with p = 1).n

Then it is easily proven that u is simply the linear interpolant of u (ann

analogous result holds for higher p). This obviously implies that the error

I(u-un)(0)1, for instance, will only depend upon the behavior of u over some

13 (-=,5), 8 < 1. In fact, this error will converge asymptotically at

the optimal rate of O(h 2) for any a > 1/2. Also, for fixed S,

r- for r = 0,1 will similarly converge at the optimal rate

O(h 2-r), even if 1/2 < a < 3/2. We say, therefore, that the h version is

free from pollution. The h-p version also turns out to be free from

pollution, so that I(u-u n)(0), 1Ju - unIlL2(I), Jlu - unil HI(I) all converge

at the optimal exponential asymptotic rate determined only by the analytic

behavior of u over I,,, S' close to 6, and not by the singular behavior

at x = -I.

The p version, however, will exhibit pollution. Suppose we use a single

element, then with u u , r = 0,1, will be no better than

the rates given in Sections 2.3, 2.5 for lu - u P1 , even though u is
P Hr(I)
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analytic over I More precisely, let us estimate I(u-u )(0)I. Noting thatP

P m(0) = (_1 )m (2m-l)!! (-1 )m 1 + 1 +

2 (2m)!! =m

P2m+1(0) 1,

we get for p = 2k+1 (using (2.22), (2.43)),
C (-lm+ 1

C (" -1 W (1)m 2m+1 (1 + O(m-l 1,
(u-up)(O) - (( + Q(p- )) + 0 ( b

P M=k A (m+l) 1 / 2

Using (2.44) and the fact that the terms in the sum are of alternating sign,

this gives

I(u-u )(0)1 _ c (I + 0(p - ))
p 2p+1/2

The above estimate clearly shows the pollution effect, since in the absence of

pollution, the rate should be exponential because u is analytic over 16

The reason this pollution occurs should be clear: unlike the h and h-p

versions, there is no "buffer" of elements now to isolate the singularity from

the rest of the domain. For more results on the pollution problem in 1-d, in

the context of the h-version as well, see [W21.

3. THE MODEL PROBLEM AND ITS REGULARITY

In Section 2 we have analyzed a simple one-dimensional problem. In this

section we will address the basic properties of the analogous problem in two

and three dimensions. We will concentrate on model problems which are typical

in the field of computational (structural) mechanics. Mathematically, these

problems are described by elliptic partial differential equations with

piecewise analytic input data. Hence this class of practical problems is

relatively narrow and well-defined, leading to several important common
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properties which can be exploited in their numerical treatment.

3.1. The model problem

Let us consider 0 c R2 to be a curvilinear polygon with piecewise
M

analytic boundary an = U F', where F.I is an open arc and F.r is analytic
i=1

with endpoints A., A.i+. AA2 ..... AM (AM+I = A,) will denote the vertices

with internal angles wI''.'WM (0 < . s 2n). (If w.1 = 2n then we have a

slit domain, where the boundary is taken to be two-sided.) an will consist

of two parts, F = U F. being the Dirichlet boundary and FN = an - FD

the Neumann boundary. It should be noted that the boundary could be smooth

everywhere, with w. ar and the vertices A. corresponding to points inI I

FD n FN' We restrict ourselves to simply connected domains in order to

simplify the exposition. An example of such a domain and the notation used is

shown in Figure 3.1.
N3

In three dimensions, Q c R will be a bounded domain with piecewise

analytic boundary an consisting of faces r., i = 1,2,...,M which are1

3 .. 3curved polygons in R joined by edges T,, i = 1,...,ne (curves in 3

and vertices Ail i = 1,...,n. rD and FN will now be the union of some

faces.

Analogously to (2.1) we will now consider a second order elliptic system

of m differential equations for the unknown vector u = (uI .... um) which,

when cast into the variational form B(, v) (analogous to (2.3)), is given by

( t au . av
(3.1) B Uý' ') J ,),a . ))dx,

i,j=l k,t=l

where t = 2 or 3 and a ijk = aji~k are analytical functions on 0
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satisfying an ellipticity condition that ensures

(3.2) B( - '0

H (02)

Let

H(D() = { H H(0), v = 0 on F }

A,

Figure 3.1. The scheme of the domain.

Further, let F be a continuous functional, defined on H C(2),ofteor

(3.3) F(•) :f• ?-dx + fF •-d

rN

IO1- 1 N-

where ? is analytic on and ý is analytic on every Fi, F. C rN*

Moreover, let g e C (r ) and be analytic on each . r PD Then our model

4. 1
problem consists of finding u e H (0) satisfying

(3.4) B('i,) = F(O), V v E H D()
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(3.5) = g on FD

For r D condition (3.2) ensures a unique solution for (3.4), (3.5). For

rp = D , we need an additional solvability condition on F and Q.

21
We define the energy norm lullE = (B(uu))1/2, equivalent to the H (0)

norm. By restricting our formulation to the above class of problems with

piecewise analytic input data of the type assumed, we ensure that the solution

will possess certain special features.

Let us now describe two concrete examples of (3.4), (3.5) in which we

shall be interested. The first problem is a scalar one (m = 1) on Q c Rt

with

(3.6) k dx, k = k .(x) > 0.
fQ(i=1 1 1

For k. 1, we get the Poisson equation. Most of our cited results are in1.

two dimensions but the three-dimensional problem will be mentioned as well.

In Section 5 we will be interested in the 2-d case that k. are very

different in magnitude. Obviously, in this case the bilinear form becomes

degenerate as k /k2 4 0. Such degeneracies occur in various practical

problems and their numerical treatment will be discussed in the context of the

robustness of the method (the locking problem).

Our second example is the typical model problem of two-dimensional

elasticity. We will restrict ourselves here to the case of isotropic

homogeneous materials (plane strain) for which m = 2, t = 2 and

4 or 4 ~4) v 41.(3.7) B(uv) [ t(u) cv) + 1-( (div udiv v x.1+ ij 1-2v

i,j=1
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1
where E > 0 is the Young's modulus of elasticity, 0 < P < - is the Poisson

ratio and

(3.8) c..(u) _ I - ax+rj 2 Ox 1

1

For v -4, the bilinear form becomes degenerate as in the first example.

Nevertheless, there is a large difference in these two cases. In the first

one, the solution becomes less smooth as the form degenerates and in the

limiting case the problem is not elliptic. In the second example, the

degeneracy does not influence the smoothness of the solution and the limiting

case is still an elliptic problem. See e.g. [AFlI for a general analysis of

the degeneracy with the smoothness being preserved.

In three-dimensional elasticity the formulation is analogous to (3.7),

(3.8).

3.2. Regularity of the two-dimensional problem

Let us now analyze the regularity of the solution of our model problem
N2

for Q c R . First assume that ag is smooth and that either F = ao or FD

= . Then

(3 .9 ) HUl k ( ) C Hk -2 ( ) H k- 1/2 ( D H k-3/2 ( I-

If the data (i.e., aM, g, h) are not sufficiently smooth (at vertices)

or both parts FN and FD are present, then (3.9) does not hold. (Note that

the analyticity of g, h is only cn F..) However, under our assumptions, uM

will be analytic on • - U A. and in the neighborhood of a vertex A., for the
i=l

scalar equation (m = 1), u will have the form (see [CS], [Gr2], [Gr4], [Da])
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J S T+t J ((3.10) u c.st sjt (f ) rJ InSr +(O
(3u= nr+u 0 = U . + u

j=l s=O t=O j=1

Here, (r, V) are local polar coordinates at the vertex Ai and 0jst are

analytic function in f. The decomposition (3.10) for a proper choice of J,

S, T is such that the remainder u 0  is smoother than the terms in the

sum and belongs to a weighted space with the weight w(r) -- o as r 4 0.

In the simpler case of the Laplace operator on a straight-sided

polygonal domain and homogeneous boundary -onditions, one has S = T = 0,

i.e.,

Cc..
(3.10)' u _ cj( )r i +

j=1

except for the case of cc. being an integer, when S = 1. The 'j and a..

are explicitly known,

jn/w for Dirichlet or Neumann boundary conditions

C(2j-l)n/2w for mixed boundary conditions

sin a.. V for the Dirichlet or mixed problem

= tcos ai V for the Neumann problem.

The mixed problem here means Dirichlet conditions for q = 0 and Neumann

conditions for p = w.

The number T in (3.10) is different from 0 in the following cases:

i) The coefficients of the differential operator are not constant;

1i) the operator contains lower order terms;
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iii) the arcs r. are curvilinear.
1

In the case of the Laplacian, the singular term due to the curvature of

r (with j = 1, t = 1) may be less regular than the second term

(j = 2, t = 0). This happens if

c1+ 1 < a2 i.e. w < 7r

for all three boundary conditions.

The coefficients cjst have physical meaning and often are called

stress intensity factors. For details, see [CS]. We see here that the

solution is more complicated, but the singularity of the solution is analogous

to (2.2), the singularity in the one-dimensional setting.

Taking the correct number of terms in (3.10), we can write

M( 
)

(3.11) u = u.i Xi + u0 ,

i=1 j

where X is a smooth cut-off function in the neighborhood of A. Then we

have

(3.12) 11%UII c(Ilfll I`5C k(l/2( ) f+ 11hR C) h k-2, .Q )1~ -,2(,)1 -/ F
ricrD I ricrN 1

I.e., the smoothness of u 0  is analogous to that when the domain and data are

smooth as in (3.9). Ncte that although the exponents a. in (3.10) depend

continuously on the angles w., the value of S does not. As a result, the

constant C in (3.12) can be very large for angles w. close to the1

exceptional values for which S = I instead of 0. This problem can be

avoided, however, by adjusting the expansion of u.
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So far, we only discussed the scalar equation, which was represented by

the example of Laplace's equation. The case of a system (like the elasticity

problem) is more complicated but very analogous. See, for example, [Sal. The

decomposition (3.10) still holds with 0'jst(ý) being a vector. In contrast

to the previous case, a. may now be complex (and there are more exceptionalJ

cases than before).

3.3. Countably normed spaces

The regularity of the solution in our setting of piecewise analytic

input data can be very advantageously described in the form of countably

normed spaces. (For details, see [BG2],[BG3].) For 6 < 1, let S(= {x E 0,

13 mj
r < 6) and let V = r1 , for 0 < 13 < 1. By Hm'3(S ), m a e > 0

integers, we denote the completion of the set of all infinitely differentiable

functions under the norm

2 2lull - + I D 2 k
mull~m ) H (S 1) 0i3+k-t u1 2 (S
f3 36 k=t

where

IDmul = IDcul2

and

l1ull m10( D

[3 (3 k=0 2

Further, let us introduce B$t (S ) 0 consisting of those u E H t'j (S
f3' ( 3 3

for which

lf+keIDkull L 2C(S 6d k-1 (k-W)!,

35



k = 1,f+1 ..... C 1., d e 1 independent of k.

Finally, introduce the space •($2),

S2(S ) = {u E H 2,2u(S )(x) 5 Cd k!C D 1
f3 H tu3 (Sx ck 13+k-1

We then have

B (S ) C C (S ) C B 2÷(S c > 0 arbitrary.
(3 a3 (36 13+C 6'

Under the assumptions made above, we have the following theorem.

Theorem 3.1 [BG2] [BG3]. Let u be the solution corresponding to a second

order (scalar) operator.

i) Let 0 be a polygon (i.e., F. are straight lines). Then the1
m

solution u is analytic in 2 - U Ai, and in the neighborhood of any Ai.
i=1

we have u e B 2 )(S V6 < '3 where 0 < ( < 1 depends on the angle w
(36' 0 i

ii) For curvilinear polygons, u is analytic on Q2 - UA.i and

u C (S) 0 < 3 < 1.

The characterization given in Theorem 3.1 is very useful in practice

because it allows us to construct the h-p version so that its convergence rate

is exponential, without knowing the decomposition form (3.10) exactly. For

analogous results for problem (3.7) we refer to [GoB].

3.4. Regularity of the three-dimensional problem

In three dimensions, the situation is more complicated. The solution is

again analytic on 2\(edges and vertices). There is a singular behavior in

the neighborhood of the edges (called edge singularities) where the solution

is smooth along the edge and singular in the direction perpendicular to the
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edge. In addition, near the vertices, the solution has an essentially radial

vertex singularity, as well as transitional edge-vertex singularities that

appear in cones around the edges. The stress intensity factors, i.e analogues

to Cjst, are now functions along the edges which are smooth but have singular

behavior in the neighborhood of the endpoints (the vertices). These stress

intensity factors may be bounded or unbounded in dependence on the geometry.

In addition, there are stress intensity factors for the vertex singularity.

As an illustration, let us present some regularity results from

[Grl] [Gr2], (which were used in [D2] for the following model problem: Given

f E CC (ý5), find u such that

(3.13) -Au = f in Q

u = 0 on F,

3
where 0 is a polyhedral domain in R

First we describe the singularity close to T, an open segment of an

edge T0 of 0 assumed to be along the x 3 -axis. Let the dihedral angle at

TO be w, then this singularity is characterized only by the values .. =

jn/O. Then, in a neighborhood G of I (such that G does not intersect

any corners or edges other than 10) we have, analogously to (3.10) (for f E

C 00(a2) )

J S T a ,t
(3.14) u = Z Z cjst(x3)0jst(O)r J inS(r) + u ,

j= s=O t=O

where (r,o,x3) are local cylindrical coordinates, c jst (E ) and bjst

are analytic in 0. As before, S = 0 for the problem (3.13) except for

integral values of a.., for which S = 1.
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Next, we consider the behavior of u in the neighborhood of a vertex.

Let A0, the vertex, be situated at the origin and be an endpoint of the edge

70" Let K be the intersection of 0 and a solid circular cone with vertex

A0 and axis along To, which does not intersect any edge having an end point

at A0 other than .0' Let K = K r) B0 where B0 is a small ball of radius

P0 about the origin. Also, let K be the infinitely extended cone coinciding

with Q in a neighborhood of the origin and let R = K o S, where S is the

unit sphere. Let 0 < A 52 :5 ... be the eigenvalues of the

Laplace-Beltrami operator on R with homogeneous Dirichlet boundary data on

aR, let 13i 47+1 , and let a. be the coefficients (corresponding to the

singular coefficients a.. above) for this operator for the singularity in a3

neighborhood of a vertex with angle w. Then, with f E C2(Q), we have on

K0

J S T I-1/24-f3. 0"*+t

(3.15) u C~ c.t p 1 + st (P)@ s We in S (e)
j=1 s=O t=O i=O

I -1/2+j3i
L E dip 1. (0,0) u0,

i=O

where (p,0,0) are the local spherical coordinates, with origin at A0, and

with 6 = 0 corresponding to edge 7O" The functions f ist' g. and

Uo 0are all smooth, their exact regularity being stated in Lemma 4.3 of [D21.

Here, the first term is a transitional edge-vertex singularity corresponding

to edge 7 0 and vertex AO, while the second term is the vertex singularity of

radial type which will be present throughout R.

Equations(3.14), (3.15) then characterize the two types of singular
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behavior (near edges and vertices) for three-dimensional problems. For the

singular behavior of the elasticity problem we refer to [Gr3I, [Pel.

We see that in two dimensions (for the Laplace equation), the

singularity depends only on wo., the interior angles of the domain and uponJ

the boundary conditions. In three dimensions, the situation is similar for

edge singularities, but not for the singularities near vertices, which depend

upon the Laplace-Beltrami eigenvalues. This makes the a priori determination

of the exact form of the singularities more difficult. In general, for any

vertex A, I = 1,2,...,n w, we now define S to be the portion of the

unit sphere subtended by the infinite cone which coincides with 0 in a

neighborhood of A Then, in addition to the dihedral angles w., j =

12,...,n, the regularity also depends upon the coefficients (,i = .+•,

we 0•, < ... are the eigenvalues of the Laplace-Beltrami

operator on S with homogeneous boundary conditions on as t These

eigenvalues are directly related to the Steklov eigenvalue problem on KO.

See [BPA].

Let us mention that we can also describe the regularity of the

solution using weighted spaces, as was done in Theorem 3.1 for the two-

dimensional case. Unlike the isotropic weighted spaces used in the

two-dimensional case, however, the natural spaces in three dimensions to

describe the different types of singular behavior in the neighborhood of edges

and vertices are anisotropic. We will not elaborate on this here. For

regularity and error estimates in terms of countably normed spaces in 3-d, we

refer to [BG4].
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4. FINITE ELEMENT SPACES AND BASIC APPROXIMATION RESULTS

We will proceed here analogously to the one-dimensional case. Assume

for now that g = 0. Then as in Sections 2 and 3 we will consider Vn c

H(S ) to be the finite element space of 'imension Nn (number of degrees of

freedom). The finite element solution u E V is then such that
n V Vn

B(u'v) = F(sv) vn'

4.1. The finite element spaces

We will now restrict ourselves mainly to the two-dimensional problem and

define the meshes and elements analogously as before.

Let S = (-1,1)2 and T = {f,O < O < (+i)vi , -1 < :5 0, 0 < r <

(l-,)r3V , 0 5 < l} be the standard square and standard triangle

respectively. The mesh Tn is now a partition of 0 into the open

(n)curvilinear triangles or quadrilaterals denoted by T. , j = 1,2,...,mn
(n)(n

such that to every T. ( we may associate an invertible mapping F.(n)
J J

given by
x X(n)(,n,), Y = y(n)

J J

(n) (n)
which is a one-to-one mapping of S onto T. (if T. is a

J J(n) (n)
quadrilateral) or T onto T. (if T. is a triangle.) The functions

J 3
(~n) nd(n)

X and Y are analytic functions in •, i and have certain uniform
$J

bounds of the form

(4.1a) ID'XI(n) , IDOY (n)I s Chn, h( = 1,2

(4.1b) < . Il h 2
2 n ,ji 3 n,j

where J is the Jacobian and the constants C.i, i = 1,2,3, are independent
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(n)of the partition. Here, h is the maximal side length of T. Theren,j j

are some additional assumptions about uniform analytic extendability of

functions X (n)(ý,n) and Y (n)(g,n) outside S or T, which we will not.3 .3

discuss here (see [BGl]). In the case when T(n). are straight sided

triangles, the mapping F(n) is linear and the uniformity condition is.3

satisfied if the minimal (and maximal) angle is bounded from below (and above)

by constants independent of the partition under consideration. Further, we

-(n) -(n)
assume that T. n Tk is either empty, a single common vertex or a single

-(n) -(n)common side and if s ,k 'ý T Tk is the common side, then x E s,k

is mapped by the mappings (F. ) and (F n) into the same relative
3 k

position on the side of the standard square or triangle. The above

assumptions about the partitioning are analogous of the ones for the

partitioning of (0,1) into I in Section 2..3

Now we will define the quasiuniform, radical and geometric meshes.

1) The quasiuniform mesh. Here {7 n} is such that

hn

h n
n,j

where h = max h . and T > 0 is uniform for all meshes Yn undernnj

consideration.

2) The radical mesh with power (3 (with respect to A.). If1

-(n) 1A , then with I

C 1h n( min(,) r7(x) :S h n,j :5 Chn( max(n ) r Z(x)1

XeT. XET.

-(n)and if A. E T. , then
1 .4
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C1h( max() rW(x)) h n C rh(max() (x)

j J

Here r(x) is the distance of x from A.. This definition, which holds in1

a neighborhood of A., is the two-dimensional version of the definition of1

the radical mesh introduced in Section 2. It was employed in [BKPI.

3) The geometric mesh with ratio q, 0 < q < 1 (in the neighborhood
n(n) wt

of A.). Let us number the elements of Yn by a double index T(n with j
I j,k

1,... ,p(k), p(k) s p0  and k = 1,2,... ,n+l. Then if dn,j,k denotes the

(n) -(n)distance between T' rk and A. and A. i vjz 1 n,j,k

n+2-k n+1-kC ~ n S jd k - C2 q

K d s h < cdn
1 n,j,k n,j,k s 2 nj,k

j = 1,... ,p(k), k = 2,....,n+l.

-(n)If A CE j,k then k = 1 and

n .n p1K3q h n,j,k s Nq j...... .

where constants C. and K. are uniform for all meshes under consideration.
1 1

The geometric mesh will be denoted by {Un}. For more about these meshes we
q

refer to [BG1I.

As in one dimension, the radical and geometric meshes are refined in

neighborhoods of the vertices A. where the singularities of the solution are1

located.

Now let us define
1(n) v(n)

(4.2) Vn(02) = {u E H(1){I For x E T. , u o. e ( (K)E)
J J P.
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(n)
where K E T, 'U P if t. is a curvilinear triangle and K = S,

p. p. J
(n)

11 Q or Q' if and T. J is a curvilinear quadrilateral. Here,
p. p. p.

9p (K) denotes the set of all polynomials of total degree 5 p. on K = T

or K = S. Further, Q p(S) is the set of all polynomials of degree 5 p.

in each variable and Q' (S) = P (S) a {ý ,g }. The elements Q are

sometimes called product elements, while Q are called serendipity or truncP.

elements, see e.g. [Ci],[SzB]. They are used !or example, in the programs

MSC/PROBE, FIESTA, PEGASYS and STRIPE.

The theoretical question of under what conditions the space Q p(S) or

Q;(S) is preferable has not yet been resolved sufficiently. For the

analysis of some aspects of this problem, we refer to [BE].

We now set V= n H 1 In general, the condition u E HD1 (c) in the

definition of Vn(0) restricts the functions u(F(n)x)) to belong to a
3

proper subset of P C(T) (or Q p(S), Q' (S)). This is necessary to enforce

continuity of u e H 1 (), for example, when p. is different over adjacent
D

elements.

As in Section 2, we now deal with the space Vn (9 n'pn) c H1(0) where
HDC)

P-n is the degree vector. We note that for quasiuniform meshes and uniform

2n = Pn' we have

N h-22
n n n

which also holds for the case of radical meshes and uniform p.n For the

geometric mesh and uniform p n we have

N n 2
n 0 nPoP
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Analogously as in Section 2, we have in our model problem (3.1), B(u,•) =

2 2 -* 4 )S U 2 and hence with e u - u as before,
E H1(0) n n

le 'E inf l- VE"
,evn(yn,P-n)

4.2. Approximation theorems

Let us now formulate theorems analogous to the ones in Section 2 from

which the error bounds for the finite element method immediately follow.

Let us remark that when comparing the performance of different elements

like Qp and Q; elements (for example), the rate of convergence with

respect to p or h in the theorems below may be the same, but the

performance may be different (see [BE]). First, for the h-p version with

quasiuniform meshes, we have the following theorem.

Theorem 4.1 [BS1I. Let us consider pn = p and a family of quasiuniform

meshes .n Then

(4.3) inf Ilu - V I 1 Ch -Ip-(k-l) IIlH k
4 n H(02)
vev

where W = min(p+l,k) and C is a constant independent of h,p and u.

From the above theorem, it is clear that for the p version, we have a

rate of O(pN ). Let us outline how this rate is established-this will

allow us to explain some key techniques used in p version approximation

theory.

Suppose we consider a mesh of triangles, then for the p version,

there will only be a finite number of elements, this number being independent
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(n)
of p, i.e. n. Consider the triangular element T. (with h < 1).3 n,J
The first step is to extend the function udefined on (n an open unit

-(n)
square R satisfying R D r. , such that the norm-preserving property3

Hk CR) S CI1141H1 holds.
3

Next, we use the Tchebysheff transformation, which transforms algebraic

4polynomials into periodic trigonometric polynomials. u gets transformed into

u on the mapped square R such that the norm is once again preserved, i.e.
4 4

(R~ 5 Cjf . The function u, of course, is now periodic and

H'(R) H (R)

therefore can be approximated by Fourier expansions. For each p = 1,2,...
4

we therefore obtain a trigonometric polynomial w satisfyingp

jju ~ 5(R) (k-s) -
11 - W { ,1 Ho A p 1,1Hk0 s 5k.

P HS(•)HkCR)

- -2 4 ( j ) (• n )
Transforming the functions u, w back, we get a w E) for each

p, j, such that

(4.4) - ( C-(k-s)
P S (T~n)) lull k (n)

3 3

-(n)Note that in the above, we used the fact that T. is a proper subset of R,3
-(n)

I.e. the distance of Tr. from the boundary of R is strictly positive.3

The above construction yields a separate polynomial for every triangle.

The next step is to adjust these polynomials so that they will be continuous

on Q. As shown in [BS2], for the case k > 3/2, we may first adjust 4()-
p

so that It coincides at the vertices with the function u and estimate (4.4)

Is preserved. Then the jump (discontinuity) 0 on a side 7 of T(n) is a
3

polynomial which vanishes at the ends of 7 and satisfies (by (4.4) and the
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trace theorem),

c4.6 II ll~ooWZC ) cp-k-1)!II~ c ! )
(4.6) 00 11H12(): CpH k(T.(n)

4(j) (n)
The final step is to extend ý to a polynomial z ( over Tn. whichP J

coincides with 0 on 7 and vanishes on the other two sides of 7 and which

has a suitably bounded H (T (n)) norm. In the original proof from [BSK],

this was accomplished in a non-optimal way, giving an estimate

(4.7) Z ( Cj$Hi1 (n) H

Hk-2) ) so tha

J

The right side of (4.7) was bounded above by Cp-(k-2 )I11 k (n) so that

-)(j) 4(j) 4 nsubtracting z(P from W() for each j gave a polynomial w4 Vp p p

satisfying

(4.8) - ( cp-Ck-2)
VulkH(48) 

Hk(5)

-i

Hence, we obtained the desired estimate, except that a factor p was lost.

This loss can be reduced to p , for c > 0 arbitrary, by a useful

interpolation argument, which we illustrate below.

We obviously have

(4.9) inf 11• [H 1 Pp [H 11C411H

-- Vn"

where P u is the H projection of u onto V Also, from (4.8), we get

(41)4i - 41 5 Cp_(k-2) k(4.10) 
H(P PpU 2H M))
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Now given k, we choose K ý 4 and using (4.9), (4.10) and the

interpolation theorem for Banach spaces, obtain

P- P P 11H1 (0) C(p(H 1( ),HK(0)

k-i
where g K-1 Noting that the norm on the right is just Ilull k this

gives
-(k-1) K-2

P1 Pp~ H 1 (0)11 11Hk Q *

K-2 CSelecting K large enough, we get K-2 - .--- which leads to the

desired result, with the constant C in (4.3) depending on k and C.

Let us state the above interpolation argument as a theorem.

Hk Vn
Theorem 4.2. Suppose P H: H() V n is a projection that satisfiesP

il U1Hk(92) : lu H k M)- cllu ( s

Plu - P ull k C(s)p (s-0 lUl uS(• for arbitrary s > k, s 2.

Then given e > 0, there exists C = C(e,s) such that

Ilu - PpUAlk I Cp-(s-k)+c lull s

H(n}) H(n)

The above interpolation argument has been used frequently in the p version

literature, e.g. in [BSK], [D1], [JV], [S1]. Note that such an argument does

not work for the h version, since the rate of convergence is bounded by the

polynomial degree.
-4(j)

To obtain the optimal order (4.3), without the c, the extensions z

In (4.7) must be constructed in an optimal way. This was accomplished in
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[BS1], using the theorems 4.3 and 4.4 below, which have found applications in

other contexts as well (see [BS3], for example). Using these theorems

together with (4.6) gives the desired optimal estimate for z(j), leading toP

(4.3).

Theorem 4.3. [BSi], [BCM]. Let T be the standard triangle with sides ji,

1.2,3, and 1-f f De coh~tinuous on aT with f! E P i = 1,2,3.

Then there exists U E P (T) such that U = f on aT and
p

IHu () H (aT)

where the constant C is independent of p and f.

Theorem 4.4. [BSI]. Let S be the standard square with sides Ti. i =

1,2,3,4. Let f be a continuous function on aS with fi E Pp(Ti

i = 1,2,3,4. Then there exists U E Q p(S) such that U = f on aS and

IuIHI T) CClIflH 2(aS),

where the constant C is independent of p and f. (See also [BCMI)

Theorems 4.3 and 4.4 are the analogs of the classical extension

theorems.Here the extension is constrained to polynomials of the same degree

as the traces. We mention that when using the space Q' (S) instead of Q p(S),pp

the constant C in Theorem 4.4 is mesh dependent ([Md]).

Let us now consider singular functions.

Theorem 4.5. [BS1]. Let u r logSr O(O) where by r , o complex, we

denote Re r or Im r , and let the meshes be quasiuniform with uniform p.

Then
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inf 114 - 11 :5 C g(h,p,s) rain , -a .
evn( 5 nlp) H () h 2X

where g(h,p,s) = max(Clog hjS,llog plS), & = Re a and C is a constant

independent of h,p.

See also [BDI. The next theorem is analogous to Theorem 2.5 and gives

the rate of convergence of the h version with radical meshes.

Theorem 4.6. Let u = r log r O(8). Then for the radical mesh with power

and uniform p,

inf 11 - 411 : C(&a,,s)hP
H(I2-ýVn H i()

provided that 1 > 1= - - > 1 - - > 0.
p

The proof is a simple generalization of the results in [BKP].

Finally, let us state the following theorem which shows that the h-p

version with geometric meshes leads to exponential convergence.

Theorem 4.7 [BGl]. Let u E B 2(0), 0 < / < 1. Let {UTn} be geometric

meshes and in s p svn, p 1 1, 0 < p,v <. Then we have

(4.11) inf [ 1- 1I[ 1 Ce n4Vn H (Q)

with 7 > 0.

See also [BDI. The proof of Theorem 4.7 uses a combination of the

approaches used in the outline of the proof of the convergence of the p

version in this section and the proof in the one dimensional setting presented

in Section 2 for the h-p version exponential rate.

It is more advantageous to use a linear degree vector than a constant
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one. The use of the geometric mesh is advantageous when the effort of mesh

generation is considered for complex geometries, since the refinement is

restricted to a small subset. It is also possible to use a sequence of

radical meshes as in one dimension and by means of the envelope obtain an

exponential rate, but the mesh generation effort is now much more complex.

So far we mentioned only the problems where the approximation in the
1

spaces H (0) was relevant. There are problems where the norms in

Hm (0) have to be used. Various analogous results can be proven here. We

refer to [Go] [S21 for details. An analysis of the error in the L2 (0)

and negative norms has been presented in [JS]. Let us briefly describe a

result of interest from this reference, related to the duality results

presented in Section 2.

Consider the L-shaped domain in Figure 4.1. The solution of Laplace's

2/3
equation on Q is known to have a singularity behaving like r by the

results of the previous section. If the h version is used to approximate the

B A

1

0 E

rr1I 6 y

!D
C 1 1

Figure 4.1. The L-shaped domain.

solution of Laplace's equation (using a uniform mesh), the error will satisfy
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, ~Ch4/
(4. 12) le Ie

1 Ch l I ( )

The usual duality argument does not lead to a full extra power in h for the

LOW() norm over the H1(0) norm. This is because of the non-convexity of

the domain: the solution of the dual problem

(4.13) -Aw = e on Q

will satisfy

(4. 14) wji k :5 CIe IL2 (Q)

with k = 4/3 only and not k = 2, as required. We note that the estimates

in i4.12) cannot be improved, see [Wi].

7or the p version, however, we obtain the full extra power of

convergence, i.e.
C- 4/3 • p7/3

(4.15) ie lp 4  , leilL ( ' e Cp lleu 1 Cp7l
IH 1(Q) 1L2 ()H 1(Q)

This is because the solution of (4.13) can now be decomposed into a singular

and smooth part as in equation (3.10)'. The smooth part will satisfy (4.14)

2/3
with k = 2. The singular part will not; however, since it behaves like r ,

it is approximated at double the usual rate by the p version, and the duality

argument easily follows. The same argument works for other non-convex domains

(see [JS]'.

So far, we have assumed that g = 0 on F In the inhomogeneous

case, u is approximated by first finding a suitable approximation gn to g

in the trace space Wn = W n( D) = {wI D w E V n where Vn is the finiteDrD'

element space when FD = ¢. This introduces a new component, depending upon

the difference g - gn into the error. There are various interesting
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results on the effect of this component on the total error, depending upon how

g n is defined. We refer to [BS3] for example.

Let us mention here that the spectral element method, which has many

features in common with the p version, also leads to various approximation

results. We will not survey them here but refer instead to [MdP] and the

references therein.

In the three-dimensional case the solution is essentially similar but

more complex. Let us mention the following theorem for the p version.

Theorem 4.8 [D21. Consider a fixed mesh Y and a sequence of degrees pn -

0. Let f E C'(_2). If u is the solution of (3.13) and woY, [3di J =

1,...,n e e = 1. w, i = 1,2 ...... are as described in Section 3, then

for arbitrary c > 0

inf n Iu - v1i 1

vVn H (Q)

where

IT
p mini- -, }

3, J

and C depends on u and c but is independent of p.

The above theorem is based on the regularity results (3.14), (3.15) for

the solution u.

Theorem 4.5 indicates what was observed computationally for the model

problems we considered, namely that in most practical cases the edge

singularity (and not the vertex one) governs the rate of convergence for the p

version.

In three dimensions the proper mesh selection is complex because of the

(anisotropic) singular behavior of the solution. Here, in the neighborhood of

edges, long (needle) elements have to be used, because while the solution is
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smooth along the edge, it is unsmooth in the direction perpendicular to the

edge. In the neighborhood of the vertices, the singularity is isotropic and

elements of the usual type are used. Hence, the class of meshes (radical and

geometric) introduced in two dimensions has to be enlarged. In addition,

the mesh generation has to be more sophisticated, to take into account the

transition between various meshes. For the approximation properties of

"needle" elements which violate the usual minimal angle condition, we refer

to [BA], [Kr].

As we saw in Theorem 4.7, for a proper sequence of meshes and degree

distributions, we have an exponential rate of convergence (with the h-p

version). In the three dimensional case. we get a result which is quite

analogous to Theorem 4.7, with the exponent in (4.11) now being replaced
n

by - For more see [BG5].
n

4.3. The effect of numerical quadrature

So far, we have assumed throughout that exact integration is used in the

calculations of stiffness matrices and load vectors. In practice, of course,

these are generally computed using numerical integration. Unlike the h

version, where a rule of fixed precision may be used as h -4 0, in the p

version, the precision of the rule must also increase as p 4 m. In [BnS],

tthe optimal convergence of the p version using numerical integration in R

t = 1,2,3 was established under a set of sufficient conditions on the

quadrature rule. Let us describe these results for the model problem (3.6),

where an a rD g = 0, a fixed mesh 5n 1T is used and p. p in (4.2).

Suppose K is a reference element, K = S or T. Then a quadrature

rule on K induces a corresponding rule on each element T,.. We then use a

family of rules {R } satisfying the following two assumptions.

53



(A) The weights are positive and the quadrature points lie within K.

(B) R is exact for all v E '.I (K) with m z 2p.p m

Condition (B) can be weakened, see [BnS].

Newton-Cotes rules are unsuitable for the p version, since they have low

degree of precision and violate the positivity of weights when p is large.

The most advantageous rules are Gaussian rules, which obviously satisfy (A).

In (BnS], it is shown that in 1 - d, the p point Gauss-Legendre and p - I

point Gauss-Lobatto rules are the minimal required when polynomials of degree

p are used. For Qp type elements in higher dimensions, the corresponding

tensor product rules using p + 1 points in each direction are minimally

required. For other rules, see [BnS].

Let A = diag(kI), where k. = k.(x) are the coefficients in (3.6).

Also, let DF. (x) denote the Jacobian matrix of the inverse of F. andJ J

define the matrix Bj = Bj(x) by

j 1 -1 -1 T.
B lb I = J.(DF I)A(DF.I

jj[• JJ J

Moreover, let 13 max IIblII Then the following theorem is proveds,q j,k, 1 Wseq(K)

in [BnS].

tTheorem 4.9. Let Q c tR Let f in (3.3) be in HS(Q), s > t/2 and let

u, the solution of the model problem (3.6), lie in Hk (0), k > 1. Let bi E
kf

H d(K) for each j, k, t, with d > t/2. Let e = e be the error when theP

finite element solution u is computed using rules {R } which satisfyP P

(A), (B). Then for any 0 s q < m-p, r = min(p,m-p-q),

(d t-(s--) -Cd--)
IJel~,I l S C{(m-p') I Ifl~s() q 2d'211U11 1fl

H 25e 1H1( ) : M P 1 H s(02) + '3d, 21 u11H 1( 0)
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+ r-(k- 1) ( 0  +q 2 13Ud,2 uIfl Hk(()}

where the constant C is independent of u, m, p and q.

The above estimate contains three terms. The first term, which is
-(s- t)

O((m-p) 2 ) arises from the approximation of f, the second, which is

- (d-t)
O(q ) arises from approximating the mappings F. and coefficients k.,

-(k-i)
and the final term, O(r ), arises from the solution u.

For the case that f, F. and k.(x) are sufficiently smooth, the
3 1

above theorem shows that if mi 2p, then we once again recover the
-(k-i)

O(p ) convergence predicted by Theorem 4.1. A similar result holds for

the case that the solution is singular, for which it may be shown that the

optimal rate of O(p-2( ) may be recovered.

If, however, d is small, then "overintegration" (i.e. taking m > 2p)

may be needed to preserve the error bound. See [BnS], [Ki] for additional

theorems and various computational results.

4.4. Numerical examples

The theorems above are asymptotic in nature. To verify that they hold

for a practical range of parameters as well, we consider a computational

example involving the elasticity problem (3.7) over the L-shaped domain shown

in Figure 4.1.

We specify tractions on a8 (with r = D , = 0 and sides OA, OE

being traction free) such that the true solution u (Ulu 2) is given by

(4.16) Ul 1G ra [(K-Q(C+1))cos Ue - a cos(x-2)8] (Mode 1)
2G5
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_ r a[(K+Q(C+1))sin a.8 + a sin(a-2)0] (Mode 2)u2 2G

where o = 0.5444837 and Q = 0.5430756. Here, G is the modulus of

rigidity and K = 3 - 4v, with v = 0.3. Equation (4.16) shows that the

solution has an r type singularity at the origin 0, of the same type as

in the decomposition (3.10) - (3.11). It may also be mentioned that the

solution lies in H 1+X-C() for arbitrary c > 0 and in the Besov space

B C+m ().
2.w

We first consider the FEM approximation of this problem using a uniform

mesh with square elements, as shown in Figure 4.2.

Since we have a quasiuniform mesh, by Theorem 4.5, for p - 1 we obtain

the estimate

IleilE - C min[h x hmin(, p-a)

2-2

This leads to the predicted asymptotic rates h and p for the h and

p versions, respectively.

Th

h h

Figure 4.2. The uniform mesh.
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Figures 4.3 and 4.4 in which the relative error in the energy norm

IeIIER is plotted respectively as a function of h and p, show that the

error is in the asymptotic range even for moderate h and p. We reach the

same conclusions as in the one-dimensional case.

S 40

S30 - p=l- -

•-= p= ,

2 0 p-4' =•' 3 q\-:"--•
> Z 15-"-.. .. .. . .-p= x...

0.54i1Ž .
10aau 10 ' " '- >*

°.

z x
"- 6 1 1 1 1 1

2 4 6 810

MESH SIZE

Figure 4.3. The error for the h version.
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Figure 4.4. The error for the p version.
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A DETAIL
NN

0

1 [ 1

Figure 4.5. The geometric mesh.

Let us now consider the case of strongly refined (geometric) meshes.

Such a mesh is shown in Figure 4.5 for n = 2 layers. This is a geometric

mesh with ratio 0.15 (which leads to nearly optimal convergence).

Figure 4.6 shows the relative error vs. the number of degrees of freedom

for various n (with p being increased in each case to increase N) in

loglej lE,R vs N /3 scale. In Figure 4.7, log Ile IE,R for various combina-

tions of n and p has been plotted. It is observed that IlIE,R
_1N/3

Ce , which is consistent with Theorem 4.7.

Remark 4.1. The meshing required by the h-p version can be expensive to

implement. Often (especially in the context of commercial p version codes),

it is enough to select a fixed "good" mesh, i.e. one that is sufficiently

refined near potential singularities, so that the error decreases largely in

the pre-asymptotic exponential region. This region is clearly seen in Fig.

4.6 for any fixed n - when p is increased further, the error goes into the

asymptotic region, which is algebraic. In general, for small required
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accuracies, the mesh should be over-refined (low p), while for high

accuracies, it is under-refined (high p). The optimal design of the mesh

would required either a fully adaptive approach (see e.g. [DO]) or an approach

based on an expert system (see e.g. [BR]).

We presented here only examples of two dimensional problems. For some

computational results of three dimensional problems, we refer, for example, to

lAB], [CM]. The basic features are completely similar to the two dimensional

case.

20

10 'p=2

> z 2n=21
_--2 n=2

0A 0.2 -L n =_ -

"" x-< n=5 -.0.1 .....
S O--o n=6

0.04
20 40 100 200 400 1000 2000

NUMBER OF DEGREES OF FREEDOM

Figure 4.6. The error IlelE,R as a function of n and p.
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Figure 4.7. The error IlellE for selected combinations of (n,p).
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4.5. The pollution problem

In Section 2, we discussed briefly the "pollution effect" in the p

version. By "pollution", we mean the phenomenon by which a singularity in the

solution at one point influences the behavior of the approximation over the

entire element. With large elements, the accuracy can thereby be unfavorably

affected even at points that are distant from the singularity. This effect is

even more pronounced when it is the derivatives of the solution (like

stresses) that are of interest. Some mathematical analysis of pollution may

be found in [WI], however, a complete theory is not yet available.

Let us show the effect of this pollution by an example from [BO].

6
Consider the plane strain problem (E = 106, v = 0.3) of a plane loaded by a

concentrated load as shown in Figure 4.8. The boundary conditions are

traction conditions such that the solution is the well known Bousinesgue

solution on a half plane. The solution then has infinite energy but it has

finite energy on any subdomain, particularly in the shaded area shown in

Figure 4.8.

In the case of the h version, the energy error in the shaded area will

be essentially the same as the error of the best approximation on the domain

(let us call it pollution free). This property of the h version is caused by

the filtering out of the singularity through a layer of elements. The same

effect of filtering occurs in the h-p version, as long as there are a

sufficient number of layers of elements between the singularity and the shaded

domain. In Figure 4.9, we show a sequence of four meshes (on half of the

panel because of symmetry) used for the computation of the error in the shaded

area. Figure 4.10 shows the relative error. We have also depicted the
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pollution-free error which is the error of the best approximation of the

solution on the shaded area. We see clearly the effect of the pollution,

particularly when the p version is used on an insufficiently refined mesh, as

well as the effect on this pollution when the layers are increased.

A 1 1

E H

\\ \ " '"

II
Bi

L• N

Figure 4.8. The scheme of a panel loaded by a concentrated force.

MESH 1 MESH 2 MESH 3 MESH 4

0.5 0.152 .15

1 1 0.15

Figure 4.9. The scheme of refined meshes.
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Figure 4.10. The error in the shaded area for
different numbers of layers.

S. LOCKING AND ROBUSTNESS

Suppose we consider (3.7) when the Poisson ratio v is very close to

0.5 and use the h version with piecewise linear elements to approximate this

problem. Then it is well-known that the finite element solution for practical

choices of the parameter h is generally not very accurate. This is due to a

phenomenon called locking (Poisson ratio locking in the particular case

mentioned), which is said to occur when the accuracy of numerical schemes for

the approximation of certain parameter-dependent problems deteriorates when

the parameter is close to a limiting value. Another example of locking occurs

when the h version is used on (3.6) when the parameter d = k /k2 is closo to

0 (highly anisotropic materials). Other examples of locking include various

plate and shell models when the thickness t is close to 0 (see, for

example, [AF2], [Pt], [BrF]).
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For such problems, one needs methods that are robust, i.e. which work

equally well, essentially independent of the parameter value. In this

connection, it has been demonstrated for various problems that the p version

is often robust in situations where low-order standard h version schemes are

not. For example, in [Vo], it has been shown that in the case of Poisson

ratio locking, the p version is essentially free from locking for the

displacements, while in [Li], the Timoshenko beam model (for which the

standard h version shows locking, see [Ar]) was shown to be free from

locking when the p and h-p versions are used. Analogous results have been

shown for shell models, see [Pt].

Let us point out that other robust, locking-free methods exist. For

example, in [SV], it was established that for the case of Poisson ratio

locking, using the h version with high order elements (p a 4) also avoids

locking. Another strategy to overcome locking is to use mixed methods, as

done for the Timoshenko beam problem in [Ar] and for various other problems in

e.g. [AF2] [Pt] [BrF]. However, the reformulations of the variational form

necessary for mixed methods may not be feasible in the context of available

commercial codes, so that it may be more desirable to have a method (like the

p version) which is robust in terms of th- standard formulation of the

problem.

In [BS4], we have presented a general theory of locking and robustness.

Let us present some definitions and results from there, adapted to the context

of the model problem (3.7), when the material is nearly incompressible.

Let us denote the bilinear form (3.7) by B (.,.) and let the exactV

solution be u when the Poisson ratio is v (0 s v < 0.5). Then the

4LVcorresponding finite element solution u will satisfy
n
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(5.1) B(uV) = B (uV,) VveVn.
v n V

-- '-4 1 2 ,v We w i ll re s tr ic t ou r
Let us denote the energy norm (B V( w))/2 by 1]WlIE,V.

L4e
attention to the case when the exact solutions u belong to the closed unit

balls HB c Hk (0) (k a 2) defined in terms of the norms
k,v

1 2 l2Hk + (10-v)2 ldiv -wik-i 2

1 1k, 1 -1H k( 0) H k 1( 02)

As shown in [BS5], HB correspond to precisely the correct weighted spaces
k,v

that characterize the regularity of the solution when the data is

appropriately bounded.

We assume that the sequence {Vn is such that

(5.2) C1 F (N) 0 sup inf jw - v!11'. : C2 F0 (N )
0- n -B --,,n

B k

where HkB is the unit ball in the Hk (0) norm. Here, Cl, C are
k1 2

independent of N and F (N) 4 0 as N - •. Equations (5.1), (5.2) imply

that for any 0 < v0 < 0.5, we can find constants C (V 0), C 2(V ) such that

the following holds uniformly for all 0 : v < V 0  (N = Nn),

(5.3) C (V )F (N) - sup 11u_ un11E : C2 (o)Fo(N)."100 vBnE 0

U k,v

If (5.3) can be made to hold uniformly for all Os v < 0.5, we say that {V n

is free from locking. More precisely, we have the following definitions.

Definition 5.1. Let f be an increasing function with lim f(N) = C. The
N-)w

extension process {Vn } shows locking of order f(N) for the family of

problems (5.1), v e [0,0.5), with respect to the solution sets {H• in
k,6
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the energy norm iff

( () -v -1I
t5.4) 0 < rim sup sup sup u - Unl El (F o(N)f(N) - M < c

"N"<w LIE[0,0.55) -v ,B
u eHk,v

For the case that M (depending on f) is bounded (respectively, infinite),

we say that the order of locking is at most (respectively, at least) f(N).

If (5.4) holds with f(N) 1 1, we say that {V n} is free from locking.

Definition 5.2. Let g be a decreasing function, g(N) -4 0 as N -) c. The

extension process {V n } is robust with uniform order g(N) for the family of

problems (5.1), v E [0,0.5), with respect to the solution sets {H } in
k,v

the energy norm iff

(5.5) Iim sup sup sup !"u )V - ni4 (gE(N) K < o*
N-co vE[0,0.5) -W 3B

u EH k,v

We see from the above definitions that if f(N) is such that f(N)F (N)

= g(N) - 0 as N - co, then {V n shows locking or order f(N) iff it is

robust with maximum uniform order g(N). Note that in the above definitions,

we could choose other error measures instead of the energy norm (e.g. the

H 1(0) norm), see [BS4].

As v -* 0.5, we see that the incompressibility constraint,

(5.6) Cw = div w = 0

gets imposed on the exact solution. The reason locking occurs is that (5.6)

gets imposed on the finite element solution as well. For there to be no

locking in the energy or H (Q) norm, the following necessary condition must

be satisfied
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(5.7) C F0 (N) -5 sup inf 1- 1 C2 Fo(N)
4 B -4 fl
uE-H k vEV

4
Cv=O

w h B H Condition (5.7) is sufficient as well, under
vw=[O,0.5)

certain general conditions (see [BS4]) which are shown in [BS5] to be

satisfied for our model problem. This reduces the whole question of locking

to one of approximability alone. Let us give some sample results from [BS5]

in this connection.
h h b h nfr

Let us take 02 to be a square domain. Let Jh and 9T be the uniform
1 2

triangular and uniform square meshes, respectively (Figure 5.1). Define, for

i = 1,2,3,

Vi C0 ( iph
V =Wu E C 0(Q), uI E R(S), V S C 5.u
p,h ' p 1

where R (S) = Tp(S), R (S) Q (S), R 3(S) VQp(S) and 53 h 9 h
p p p p p p 3 2*

/1/// IV

Figure 5.1. Uniform triangular and square mesh.
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Theorem 5.1. Let the extension process be the h version for the problem

(3.7), (5.1) using subspaces Vn = (V1  2 with p fixed. Let the solution
p,h

sets be H and let k a p + 1. Then the following is true for locking in
k,v

the energy norm and also in the H norm.

r Order of locking f Robustness

o order r

Space Vn Degree p f(N) CN• g(N) CN-

(V1 2 : p 3 t 1/2 r = (p-l)/2

p 4  =0 r = p/2

2 2
(V ,h) p 1=/2 r = (p-l)/2

3V 1 < p s 2 = 1/2 r = (p-I)/2

p > 3  = r (p-2)/ 2

The above shows that locking cannot be avoided for p s 3 for the h

version. Also, using rectangular elements leads to locking for all p. The

result for p 2 4 for (VI ) was first proved in [SV] and holds for more

general meshes.

In contiast, as mentioned earlier, it was shown in [Vol that the p

version (using straight sided triangles) leads to uniform robustness of

optimal order for the displacements, so that locking is eliminated. However,

the use of curvilinear elements is indispensable for the p version in most

cases. In this connection, we have the following computational results.

Let us consider the p version for a single curvilinear element of type

Q' for problem (3.7). We assume that this element is the image of the

standard square under a curvilinear mapping F. Below, we show the relative

errors in the energy norm for the cases that the mapped element is a square, a
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trapezoid, a quadrilateral with one side a parabola, and a quadrilateral with

one side a circle. We do this for v = 0.3 (Figure 5.2) and v = 0.5 - 1010

(Figure 5.3). It is observed that the rate of convergence now behaves like

(p-s)k) with s ý 0 depending on F (s = 0 for affine F). There is

no change in the apparent asymptotic rate so that in this sense, there is no

observed locking.

We have treated various other examples of locking in [BS4] using the

above definitions and principles. Like the above case, the reason locking

occurs in general is due to the imposition of a constraint similar to (5.6)

Such constraints usually can be interpreted as inter-element continuity re-

quirements, with (5.7) breaking down when the constrained finite element space

is too small. (For example, (5.6) can be interpreted as imposing C(1)

continuity on a space related to V n, see [BS5].) Unlike low-order h version

schemes, the p version remains robust under such continuity constraints, which

is why it is more resistant to locking.

As another example, consider problem (3.6) with k /k2 close to zero.O12

In this case, the constraint is 0 -. Suppose the h version is used, with

piecewise polynomials of degree -5 p on either of the meshes in Figure 5.1.

)=1

. ~ ~ ~ _ 40-~~CRL PARABOLA

-:> 20 -•PEZOIIY - x--~ ,,

""x 
/ 

"

TRAPE.ZOID) s~\ 7

SQUARE- x"Z 4 \\ ,Xx

Z

24 10 30 50 80) lt))

NUMBER OF DEGREES OF FREED(OM

Fig. 5.2. Error behavior for curved elements for v = 0.3.
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Fig. 5.3. Error behavior for curved elements for v = 0.5 - 10-.

Fig. 5.4, Rotated triangular and square meshes.

Then, since the meshes are aligned with the x1 - x2  directions, there is no

locking (see [BS4]) since there are a number of functions satisfying av = 0.

However, if these meshes are not aligned with x1 - x2 direction (for

example, as in Figure 5.4), then the only functions satisfying x2 0 will

be actual (rather than piecewise) polynomials and (5.7) will not hold. There
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will be complete locking in this case, with the method being non-robust. On

the other hand, if we use the p version with just one element, then the

constraint a- = 0 has no effect and there is no locking, i.e. the method is
ax2

robust. See [BS4I for a detailed analysis. Also, see [SBS] for an analysis

of locking in the Reissner-Mindlin plate.

6. EXTRACTION AND POST-PROCESSING TECHNIQUES

Usually in computational practice, the solution u of the differential

equation considered is only a tool to get the primary quantity of interest.

For example, the goal of the computation may be to find the stresses at a

point, the stress intensity factors, or the resultant (e.g. the moments) in

shell and plate theory.

The results in Sections 2,4 indicate the high asymptotic rates of

convergence, including exponential convergence, that can be obtained by the

h-p version, when the error is measured in the energy norm. The question that

we ask here is how these rates can be obtained for quantities of interest

other than the energy. For instance, if high-order derivatives of the h-p

solution were computed directly, then severe oscillations could result and

these rates would be lost.

Mathematically, we are interested in evaluating the value of a certain

function of the solution. There are various forms in which this function may

be expressed, using properties of the equation under consideration. Choosing

one such form, we then substitute the finite element solution instead of the

exact one to get an approximation of the desired value. If the exact solution

were substituted, then the computed value would be the same, no matter which

form of the function were used. However, when the finite element method is
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used, the accuracy of the computed value can be very different. In this

section, we indicate how the convergence rate in the energy can be achieved

for other quantities as well.

We illustrate the main idea by considering the simple one-dimensional

problem,

-u" + u = f on Q= (0,1) = I
(6.1)

u(O) =u() = 0

where f is assumed to be in L2 (0) so that u E H2 (). Suppose the

quantity we are interested in is the value of u'(0).

Problem (6.1) can be cast in the variational form

1
(6.2) B(u,v) = f (u'v' + uv)dx = fvdx

with u e HI M) = H I,2), v E H 1().
D C1 D

11

Let + + HI(o) satisfy +'(0) = 1, •i(1) = 0. Then

B(U,O) = (-u"+ u)#Pdx - u'(0) f0dx - u'(0)

so that

1

(6.3) u'(O) = fO fdx - B(u,o)..

Hence, we have two possible ways of obtaining the desired value u'(O):

we could either use differentiation, or equation (6.3). Function 0 is

called an extraction function. Let us compare the accuracy of these two

approaches.

Suppose that fVn ) is the sequence of subspaces defining the extension

process (Vn c H1) and {u ) are the corresponding finite element
D n
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solutions. Define

(6.4) F = F(u) = O fdx - B(u,@) (= u'(0))

1

(6.5) Fn = F(u) = fO fdx -B(Unq).

Then

(6.6) IF - F = B(u -u,@).II n

Now let z E H 1(Q) be such that
D

1

(6.7) B(v,z) = B(v,@), V v E H (0).
D

Then for any w (n) Vn we have

IF - Fl = lB(Un-UZ) = B(u -u,z-w(n)) . C5 u - Ul Iz - (n),I1
n n n u H () H(Q)

Hence,

IF-F I :C1u - AH 1  inff -lz - W111IF Fn •CH~ (Q) wr=V H (Q)

and the theory of Section 2 is applicable.

The smoothness of the function z can be easily established. Usually,

inf liz - W1 1 Zu - Ull - A1 We see therefore that the error IF - F ni

(AEVn H (Q) H (Q2)n

is, in general, of the order I~u - ul2 1 i.e. the order of the error in1 n H (2)

the energy. In contrast, if we defined F by direct differentiation, i.e.n

F= u'(O), then we would only get lu Ull (modulo a logarithmicFn n H (mouo ogrthi

term) as the rate of convergence of IF - F n"

We therefore see that by methods of the type above, called extraction

methods, more accurate values can be obtained when 0 is properly selected

72



(0 smooth). (In the case above, we could, for instance, take t = 1 - x).

Let us note that the extracted value is not changed when we replace 0 by

- W, w E Vn, so that, for example, in the h version, 4# can be restricted

only to the element containing x = 0. (See [BMI for more)

Similar ideas can be used for other values of interest. One important

case is the extraction of stress intensity factors (see Section 3). Let us

elaborate briefly on this case. Assume that we are solving the problem

-Au = 0 on 0

where 0 is the L-shaped domain shown in Figure 4.1. Suppose on aQ we have

the boundary condition

au = g on ABCDE

u = 0 on OE,OA.

Then using (3.10)' we have
2/3 20

u = F r cos(-) + v

with

jvjjr2/3 1, Igrad vIlr 1 : o(0).

Here, F is the stress intensity factor. Let us define

(r-2/3 20= (r cos(y-) )(r)

where x = 1  for 0 s r < a, X 0 for r > b, a < b < I xC (0).

Obviously, w = A0 e CQ(Q) and

w = 0 for r < a and r > b.

Now denoting QC = - RC where R = {(r,o)j r 5 c} we have
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2 ~'ud [ Bu3u/2

uAodx = uwdx = -ruds - O--ds -IF cos Z)d +o().

C C

Hence, taking the limit as c -> 0,

F = (fuw dxJ.

Proceeding as before, we define

Fn u w dx) n

and get

IF - F' :5 Cllu - unil H1 (Q) -i Z nllH 1( )

where z is the solution of the problem

-6z = w

= 0 on ABCDE
an

z = 0 on OE,OA.

(0)
Because w E C (C), and all internal angles except at 0 are •, z is

CW except in a neighborhood of the origin. In this case (when F 0 0) we

have

Iz - ZnilH1 ( CI(U - Unl H1

and hence

IF - FnnI Ilu - Unl 2(1
H (02)

(or better), i.e. IF - F n is once more of the order of the error in the

energy. This is typical for this kind of extraction.

The stress intensity factor extraction method obviously requires a
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priori knowledge of the form of the singularities. In two dimensions, a

numerical algorithm for obtaining the singular form for the general elasticity

problem may be found in [Pal (see also [Sal).

As a numerical example, we consider the L-shaped domain shown in Fig.

4.1. We consider the elasticity problem described in Section 4 with

prescribed traction conditions on aQ such that the exact solution is given

by

u = u1 + 2u2

where u1 , u 2 are given by (4.16). The mesh shown in Fig. 4.5 with two

layers is used. In Table 6.1, we report results using the p-extension for the

given mesh, showing the number of degrees of freedom N, the normalized strain

TABLE 1. Strain energy and stress intensity factors.

P N STRAIN ENERGY STRESS INTENSITY STRESS INTENSTY
I FACTOR-MODE 1 FACTOR-MODE 2

1 41 6.42072796 0.95268 2.29075

2 119 6.74137580 1.02177 2.08422

3 209 6.77029847 1.00250 2.02239

4 335 6.77575144 1.00073 2.00437

5 497 6.77683967 0.99991 2.00097

6 695 6.77719530 0.99985 2.00022

7 929 6.77736281 0.99987 2.00005

8 1199 6.77749228 0.99990 2.00001

o o 6.77776914 1.00000 2.00000

well as the (normalized) values of the first two stress intensity factors. In

addition, we present the exact values (p = co) of these stress intensity
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factors. In Fig. 6.1, we show the relative error in the stress intensity

factors as well as the relative error in the strain energy of the solution

(i.e. square of the error in the energy norm). We see that the errors in the

stress intensity factors are in fact of the order of those in the strain

energy. Note the typical form in the first phase, where the rate is

exponential, and in the second phase, where it is algebraic. For more, we

refer to [SzB]. For the extraction of stress intensity factors in 3-d, we

refer to [AB], [BPA].
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Fig. 6.1. Error of the stress intensity factors and strain energy.
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7. PLATE MODELLING

A very common problem in structural mechanics is the problem of solving

partial differential equations on a thin domain. A typical problem of this

type is the plate problem, which we elaborate on below.
3d

Let 0 = {(x = x 1 ,x 2 ,x 3 ) E R3, (x'x 2 ) E , x3 1 < d } where

w is a bounded domain with piecewise smooth boundary. Denote

S = {x eR 3 1 (xx x) z ac, dx <d} and R±= {xE 3 e R, x3 = W d.
1'2 x31 2 1l2z3

We assume that d << diam(w).

We are interested in the three-dimensional elasticity problem which we

mentioned in Section 3. Denoting

u = (uuu2,U3), HD (C) = { E(H (0)) 3  u3  = 0 on S}

and

(7.1) F(v) g(xl,x )(v (xl,x d) + v (xl,x --d)dx dx
2 ,j 2 3 1'2*2 3 1'2' 2 1 2'

-4 1the solution u E H (Q) of the plate problem satisfies (3.4) for every

v E H (Q), with B(u,v) given by (3.7) (with t = 3). This problem is the

so-called plate problem with soft simple support. Using other constrained

spaces, we can describe other physical conditions (for example, using the

condition u =0 instead of u3 = 0 on S gives the clamped boundary

condition).

In order to numerically approximate this problem, a common technique is

to first replace the three-dimensional model by a two-dimensional one, which

leads to a considerable reduction in the number of degrees of freedom and

makes the problem more numerically tractable. The simplest model that could

be considered is that of the Kirchoff plate. However, this has the

disadvantage of requiring C(1) elements.
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Two-dimensional models that only require C(0) continuous elements can

often be viewed as one of a hierarchy of models in the sense described below.

To obtain such models, the solution is essentially "expanded" in terms of

polynomials (or other functions) in the x 3 direction. More precisely, let

n = (n ,n2 n ), ni 2 0 integer and define

n.
n 1 4 1 1 12 3~(7.2) H D(92) u E H D (0) ui = Ni dxx i 1,2,D 2 L L j1'

j=0

Un 3  
2xx

u3  1 C(XlX 2 ) L dJ

j=0

where L.(x) are Legendre polynomials. Then by the hierarchy of plate modelsJ

-(n)
we will understand the problem of finding u such that

(7.3) B(u ,nv) = F(v) V v E HD(Q).

Let us note that because of symmetry, the models (2nl +1,2n2 +1,2n 3) are the

same as the models (2n +2,2n 2+2,2n3 +1). Typical models used are (n,n,n+l)

models. As we note below, such hierarchies of models are easily implemented

in the framework of the p version. The exact plate solution and the solution

of the particular model depends on the thickness d. It is possible to show

that the models n = (nl,n 2 ,n 3 ), n1 z 1, n 2 : 1 and n 3 a 2 converge to a

limiting solution as d 4 0 which is the same s the limiting solution as d

4 0 of the exact (three dimensional) solution introduced above. The model

(1,1,0) which is very often used in engineering (the so-called Reissner-

Mindlin model) does not have the above property, namely, the same limiting

solutions as the exact one, unless modified elastic constants are used (see,

e.g. [BLI]). We note that for v = 0, no modification is needed. Further, it
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is possible to show that the polynomial choice in x3 used in (7.2) is

asymptotically optimal.

For fixed d, the solutions of the models converge to the exact 3-d

solution as min(n 1 ,n 2 , n 3) 4 c. If g(x) in (7.1) satisfies some smoothness

conditions, then, for larger n, n fixed, the rate with respect to d (as

d -> 0) is higher. The various models have different properties with respect

to boundary layers, corner singularities, etc., see [BL2].

Assume now that the domain w is partitioned into the elements T.J

based on triangles T or squares S (see Section 4). Then T. = T. x(-d/2,d/2) is3 3

a three-dimensional element. Now denote Q.(p,q) to be the set of

polynomials of degree q in x 3 and of degree p in x,, x2 (this could include

the case of P Qp or Q' type elements in xI,x 2 - see Section 4). Then

the finite element solution with elements Qj(p,q) of the three-dimensional

plate problem with degree q fixed can be interpreted as the finite element

solution (using elements of degree p) of the plate model with n = n 2 = n3 = q

in (7.2). Hence, the hierarchic modelling can be easily implemented in the

frame of the p (or h-p) version of tnree-dimensional elasticity. (In fact,

this implementation is available in the commercial program MSC/PROBE). Let

us comment on three main aspects of the solution of the plate problem in this

hierarchical framework.

a) The locking problem. Here, the theory addressed in Section 5 fully

applies. The analog to constraint (5.6) for the (1,1,0) model is

ao0
i'l ax. = 1,2.

For more, see [SBS].

b) The problem of optimal meshes. In the neighborhood of corners,
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refined meshes similar to the ones discussed in the previous sections (radical

or geometric) should be used. In the neighborhood of edges, the use of

"needle" elements analogous to those used in the neighborhood of edges in

three dimensions is of importance to resolve boundary layers. Let us mention,

however, that the singularity here is of different character than the edge

singularity in three-dimensional problems. The problem of the optimal mesh

has not been satisfactory resolved as yet.

c) The pollution problem. The error in the neighborhood of the

boundary can now influence the accuracy of the solution far from the boundary.

Essentially, there is pollution present.

In addition to the problem of plates discussed above, let us mention

that a similar treatment is possible for other problems over "thin" domains,

like those arising, for instance, in shell theory.

8. IMPLEMENTATIONAL ASPECTS

In this paper, our emphasis has been mainly on theoretical aspects of

the p and h-p versions. In this section, we briefly focus on

implementational aspects which, of course, are of essential importance in

terms of practical use.

As mentioned in the introduction, currently there are only a few large

research and commercial codes based on the p and h-p versions. STRIPE

(Aeronautical Research Institute of Sweden) is a 3-d adaptive p version

research code, Applied Structure (Rasna Corp. CA, USA) and MSC/PROBE (MacNeal

Schwendler, CA, USA) are p version commercial codes and PHLEX (Computational

Mechanics, TX, USA) is an adaptive h-p version commercial program. The

implementation of such p and h-p version codes is significantly different from
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that of h version codes. Let us summarize some of the basic differences.

a) Mesh construction. This is much simpler for the p version, which

uses a relatively small number of elements of large size. With p version

codes, it is important that the user select a good mesh to obtain a high rate

of convergence (See Remark 4.1).

b) Sparsity. The local stiffness matrices are much less sparse for the

p version than the h version. Hence, the computation of stiffness matrices

has to be given special care, for instance by taking into account the computer

architecture used. For example, the program STRIPE successfully exploits the

architecture of the CRAY computer to deal with this problem. Reduced

sparsity, especially in the case of three-dimensional problems with more than

100,000 - 500,000 unknowns, has serious implications for the I/O time of

communication between disk and fast memory.

c) Adaptivity. In the case of the p version, the structure of an

adaptive program is much simpler than the h version, since only new shape

functions are added, without changing the mesh. The architecture for the

adaptive h-p version (e.g. PHLEX) is much more complex (see [DO]). The

adaptive selection of shape functions is usually determined by considerations

based on the error in the energy. Essentially, those shape functions are

added which maximally change the computed energy. The reason that adaptive

principles for the h-p version are more complex is that simultaneous decisions

about mesh changes and shape function selection have to be made.

d) Accuracy assessment. The p version allows the user to control the

desired accuracy of the data of interest. This control is essentially based

on comparison of fhe comp'ited data by increasing the degree p, so that the

user can a priori specify the required accuracy. This feature has been
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incorporated e.g. in Applied Structure-see also [AB].

e) Linear solver. This can either be direct, when many right hand

sides (loads) are present, or iterative, when the number of unknowns is large

(> 100k, say) (see e.g. [Mn]). An effective preconditioner can be based on

the low p (p = 1,2) discretization.

f) Hierarchic bases. As mentioned in Section 2.2, the shape functions

for the p version have a hierarchic character. This is exploited in adaptive

computations and in the construction of preconditioners.

g) Overall effectivity. The effectivity of any methods, h, p or h-p,

depends upon many factors. In this paper, we have focused primarily on one

factor, the asymptotic rate of convergence (with respect to the number of

degrees of freedom). Some other important factors are computational cost,

man-power cost for data preparation, and proper usage. Further, estimations

of efficiency must also take into account various features that may be

present, such as adaptive features, a posteriori error estimation, etc. (The

capability of a posteriori error estimations is essential if a program is to

give reliable results.)

Let us mention with respect to overall effectivity that the complex

question of comparison of different methods and codes is usually accomplished

through various benchmark problems. In this regard, an interesting

engineering comparison study is presented in [CM], where the p version is

compared to a commercial h version code for two test problems of typical

Industrial complexity. The results presented underscore the viability of the

p version not only in comparisons based on the number of degrees of freedom,

but also in those based on the total CPU time.
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